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Abstract—Recently, a formal requirements method calledof the U.S. Navy’s A-7 aircraft, the SCR method was de-
SCR (Software Cost Reduction) was used to specify softwarsigned to improve the quality of software requirements by
requirements of mission-critical components of three NASAdocumenting them in a manner that is unambiguous, precise,
systems. The components included a fault protection engin@nd readable. During the 1980s and the early 1990s, many
which determines how a spacecraft should respond to a deompanies, including Bell Laboratories, Grumman, Ontario
tected fault; a fault detection, isolation and recovery compoHydro, and Lockheed, used the SCR method to develop real-
nent, which, in response to an undesirable event, outputs&orld systems. However, the application of SCR was limited
failure notification and raises one or more alarms; and a disbecause either no tools or only weak tools were available to
play system, which allows a space crew to monitor and consupport the method.

trol on-orbit scientific experiments. This paper demonstrates

how significant and complex requirements of one of the comTo provide powerful, robust tool support customized for SCR,
ponents can be translated into an SCR specification and d&RL began developing the SCR toolset in 1994. The current
scribes the errors detected when the authors formulated theolset includes an editor for constructing the specification,
requirements in SCR. It also discusses lessons learned in ug-dependency graph browser for displaying variable depen-
ing formal methods to document the software requirementsiencies, a consistency checker to automatically detect well-
of the three components. Based on the authors’ experiencef®rmedness errors (such as missing cases), a simulator for
the paper presents several recommendations for improvingalidating the specification, an invariant generator for deriv-
the quality of requirements specifications of safety-criticaling invariant properties from the specification [17], a model
aerospace software. checker and a theorem prover for checking application prop-
erties [10], an automatic code generator for constructing ef-
ficient source code from the SCR specification [20], and an
automatic test case generator for constructing tests from the
In a landmark article published in 1987 [4], Fred Brooks SCR specification [7].

states that

1. INTRODUCTION

To provide formal underpinnings for the method, NRL has
The hardest single part of building a software system is decideeveloped a formal model which defines the semantics of
ing what the requirements are . .. No other part of the work soSSCR requirements specifications [12]. SCR’s underlying
cripples the resulting system if done wrong ... [or] is as diffi- computational model is a synchronous variation of the classi-
cult to produce and hard to fix later on. cal state machine. Because SCR specifications are expressed
in a user-friendly tabular notation rather than more complex
Almost twenty years later, eliciting, representing, and or-notations (e.g., a higher-order or temporal logic) or a spe-
ganizing requirements remains one of the most challengingialized computational model (such as CSP), SCR’s start-up
problems in software development. Recently, a group ofost is lower than that of many other “formal methods” tools.
internationally known software experts met at a workshopMoreover, applying SCR enables detection and removal of re-
sponsored by NSF and the EU, whose goal was to define thguirements errors early in the software lifecycle when errors
most important problems in software development. One ofire much cheaper to fix than errors detected later, for exam-
the most difficult problems discussed at the workshop wagple, during testing. Another benefit is that the SCR method
that of eliciting and representing software requirements.  and tools can help developers construct a specification that
is unambiguous, concise, readable, and organized as a refer-
One method that has been formulated to specify the requireeince document. Such a specification facilitates both human
externally visible behavior of safety-critical and mission- and mechanical error detection.
critical software systems is the SCR (Software Cost Reduc-
tion) requirements method. Formulated in the late 1970s t&urrently, several sites of Lockheed Martin are using the SCR
specify the requirements of the Operational Flight Prograntools to specify and analyze a number of avionics functions,
such as flight navigation, flight control and management, and
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use the SCR tools in conjunction with an automatic, test cas&he paper is organized as follows. Section 2 introduces the
generator called T-VEC [3]. Lockheed is also using the SCRhree NASA systems. Section 3 presents a brief review of the
tools in developing software for the Joint Strike Fighter. SCR method and tools. Section 4 presents excerpts from the
SCR specification of the requirements of one of the NASA
The utility of formal methods and their support tools in an- systems, the FDIR (Fault Detection, Isolation and Recovery)
alyzing SCR and other formally represented requirements ofoftware module, and describes two problems detected in the
safety-critical systems has been described in many previougquirements document for this module using SCR. Section 5
papers and reports. For example, in 1998, Easterbrook et alescribes the lessons learned in applying SCR to the three
described the utility of formal tools, including SCR and PVS, systems, Section 6 presents several recommendations, and
for detecting ambiguity, missing assumptions, and other deSection 7 presents some concluding remarks.
fects in requirements specifications of spacecraft fault pro-
tection systems [5]. Also in 1998, our group described the 2. THREE NASA SYSTEMS
use of model checking to detect a serious defect in the co
tractor specification of a safety-critical military system [13].
More recently, we described how both the TAME front-end
to PVS and SCR were used in the formal specification an
verification of a security-critical embedded system as part o
a Common Criteria evaluation [11].

r‘ﬁecently, the SCR requirements method was applied to soft-
ware components of three NASA systems: a Fault Protection
GEngine, which detects faults in the operation of a spacecraft
fand determines how the system should respond to each fault;

a Fault Detection, Isolation and Recovery system, which, in
response to some undesirable event, outputs a failure notifica-
Rather than focus on the utility of advanced verification tech-tlor.] and raises one or more alarms; gnd an Incubator Dlsplqy,
. . . . which allows a space crew to monitor and control on-orbit
nigues, this paper describes the construction of a formal re- . . . . X )
science experiments. This section briefly describes each com-

quirements speC|f|ca.t|.on In SCR and h.OW practitioners cail onent and the plan for applying the SCR method and tools to
produce such a specification. Once available, a formal specj;

o ; . : hat component. In each case, we developed, in conjunction
fication can be analyzed with both light-weight tools, such as . e
. ! .. with NASA personnel, an SCR specification of a complex
the SCR consistency checker, or with advanced verification . . )
rtion of the required behavior of the component. The effort

tools, such as model checkers and theorem provers, to wedd . ; . .
. ) . ... We expended in producing the SCR specification was quite
out errors, and thus a high-quality requirements specification ) :
modest: less than one week in the case of FDIR, less than

can be constructed. : X
two weeks in the case of the Incubator Display, and about

In most previous efforts, formal methods experts have formu'Ehree weeks in the case of the FPE.

lated the requirements specifications, and, in most cases, ha¥e
discarded these specifications after the analysis tools were ap‘:’1
plied. Unlike these earlier efforts, our goal is to produce a re-The function of the Fault Protection Engine (FPE), the most
quirements specification that is useful, not only for purposegomplex component of the Deep Impact Fault Protection Sys-
of formal verification, but throughout the system life-cycle. tem, is to detect faults in a spacecraft's software and hard-
Such a requirements specification should be the basis faware and to schedule, coordinate, and track responses to those
both software design and implementation. In addition, wherfaults [6]. The FPE uses a relatively complex algorithm to
the requirements change, either because the original requirdecide how the system is required to respond to a fault, e.g.,
ments were incorrect or because the required system behaviathen it is responding to a previously detected fault. The ob-
needs to be modified or extended, the original requirementgctive of applying SCR to the FPE was to construct a com-
specification should be revised to reflect the needed changgsiete, formal SCR specification of the required external be-
Once the system has been deployed, the requirements spechavior of the FPE and, based on the specification, to auto-
cation can be used as the basis for developing new versions ofatically generate a set of test cases satisfying a given cover-
the system—many parts of the original specification shouldage criterion using the technique described in [7]. The over-
be reusable without change or with minor changes in the newll goal of the project was to assess the utility of the gener-
requirements specification. ated test cases for evaluating a software implementation of
the FPE. Figure 1 illustrates the FPE's required behavior.
A major difference between our approach and previous ap-
proaches is that our goal is to teach practitioners the skill§ault Detection, Isolation and Recovery
needed to produce a rigorous software requirements specifj
cation. Hence, although for all three projects, the interest o

NASA personnel was in the SCR tools and their utility for (TRRIM) software, whose function is to position the ther-

improving NASAS software development process, an IMPOr al radiators of the International Space Station in an on-edge

tant question when we began these three independent efforts. . - o
orientation to the sun to maximize heat dissipation from the
was whether software developers could learn to produce an

. e : Eadiators. FDIR processing for the TRIRU subsystem is
acceptable requirements specification using the SCR method, " . .
This paper presents a preliminary answer to this question safety-critical because fallu_re to detect, isolate, a_nd recover
" from faults could lead to serious damage to the radiators. The

ult Protection Engine

"he Fault Detection, Isolation, and Recovery (FDIR) mod-
ule is part of the Thermal Radiator Rotary Joint Manager
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Figure 1. Required behavior of the Fault Protection Engine.

in the system environment that the system monitors and con-

Environment FDIR System trols. The required system behavior is specified as relations
Monitored Mode Class Controlled that the system must maintain between the monitored and
Variables mcFDIR ‘ Variables controlled variables. To specify these relations concisely, the

Al onand 3] Shuldaw SWICRZET || tarn SCR language provides two classes of auxiliary variables—
TR Rl — Autotrack [ chlarmz terms andnode classes-as well as conditions and events. A
mPosition_Err —¥ > ¥ ... R R . .
mrorque Motor on —» N&_‘ conditionis a predicate defined on a system state. A basic
ew ample —» . . e
mBlind_Eimegut—l- Standby Checkout eventrepresented a@T(c), indicates that conditionchanges
Terms tAutotrack Fail from false to true. The evewF(c)is defined by@T(-c). If ¢'s
thers Autotrack Fal value in the current state is denotednd its value in the next

state as’, then the semantics @T(c) is defined by-c A ¢
Figure 2. Monitored and controlled variables, modes, andand the semantics @Fr(c)by ¢ A =¢’. A conditioned event
terms in the SCR specification of FDIR denoted@T(c) WHEN ¢ adds a qualifying conditiod to an

H !
objective of applying SCR to FDIR was to evaluate the utility event and has the semanties/\ ¢’ A d.

of the SCR tools in detecting errors in the FDIR requirement

: In SCR specifications, the monitored variables represent
documentation.

dependent variablesand the mode classes, terms, and con-
trolled variables representependent variablesSCR spec-
ifications define the values of the dependent variables using
The Incubator Display is a component of the biological lab-three types of tablescondition event andmode transition
oratory developed for use on-orbit on the International Spacéables The value of each term and controlled variable is de-
Station. It provides the human interface for controlling fined by either a condition or an event table. To indicate a
the Incubator, a habitat drawer whose purpose is to promode change, a mode transition table maps the current mode
vide temperature-controlled environments for scientific ex-and a conditioned event to the new mode.

periments, and to monitor operations of the experiments con-

tained in the Incubator Experiment Chamber. The objective 4. SCR SPECIFICATION OF FDIR

of applying SCR to the Incubator Display was to evaluate.l.O
the utility of SCR for representing the display’s requirements
and for simulating the required behavior of the display soft-
ware using a graphical user interface. Figure 3 illustrates on
screen of the Incubator Display’s interface.

Incubator Display

illustrate the SCR method and notation, this section gives
more details of the required behavior of FDIR and then

gresents an excerpt from the SCR specification of the FDIR
requirements. It also describes two problems detected in the
original FDIR requirements documentation when the SCR

3. OVERVIEW OF SCR method was applied.
In an SCR specification of a system’s requirements [10], [12]Figure 2 shows the inputs, outputs, and modes of FDIR and
monitoredand controlled variablesrepresent the quantities how they could be represented using SCR constructs. Shown
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Figure 3. User interface of the Incubator Display.

in the figure are seven of FDIR’s inputs represented as monconsider the failure condition named “Blind Ops Timeout
itored variables; for examplesPosition Err is a boolean Exceeded” with ID 5 in Table 1. Given the above interpre-
indicating whether a position error has been detected, whiléation, the rule for responding to this failure condition is de-
mUser_Command indicates one of several user commands. Atfined as follows: If a) the FDIR system is in the m@leind
any given time, the system is in one of seven modes, eitheandTorque Motor is on and b) the time period that the sys-
Standby, Shutdown, Blind, Checkout, Switchover, Auto_  tem has been in mod&lind exceeds “Limit + 1", then is-
Track, or DirectedPosition. (Figure 2 omits one FDIR sue the failure notificatiofiime Limit _Blind and, if the in-
mode and excludes some of the FDIR mode transitions.) Thhibit conditionInhibit_Blind is false, make a transition to
controlled variablescAlarmi, cAlarm2, and cRecovery, Shutdown_Mode.

represent three system outputs, i.e., two alarms and the

recovery action. To make it concise, the SCR speci-Translating the example into SCR

fication also includes two terms;Autotrack Fail and

tPers. Autotrack Fail. Table 1 describes the required FDIR response to each input

event. The response may consist of one or more of the follow-
ing: a mode transition, the generation of one or more alarms,
or a recovery action. Alternatively, the response may be null.
The FDIR requirements documentation that we received fronThis section describes how the requirements in Table 1 may
NASA consisted of 1) a table listing the set of failure condi- be expressed in three SCR tables, a mode transition table de-
tions and the required response to each condition, and 2) scribing the conditions that cause the system to make a tran-
finite state diagram showing the FDIR modes, mode transisition to a new mode, and two event tables, one defining the
tions, and input events triggering the transitions. Table 1 convalue of a recovery action and the other the value of the fail-
tains excerpts from item 1). According to the NASA contrac-ure notification, a caution warning alarm.

tor who provided the table, each row of this table, such as the

Example: Required response to a failure condition

row with ID 5, is interpreted as followk: The entries in the third, fourth, fifth, seventh, and eighth
columns of In Table 1 specify the FDIR mode transitions:

(*) IF Failure Detection Phase The entry in the third column indicates the current mode
AND IF Persistence Time=None and (possibly) some condition that must hold, the entry in

THEN Failure Criteria holds the fourth column indicates another condition (possibly per-

ELSE Failure Criteria holds sistent as indicated in the fifth column), the entry in the

for Persistence Time eighth column indicates the condition which inhibits a re-
ENDIF sponse to the failure condition, and the entry in the seventh
THEN column indicates the mode change if any. Table 2 shows

DO Failure Notifications AND an excerpt from the mode transition table defining the FDIR

IF NOT Inhibit THEN mode transitions based on the information in Table 1. For

DO Recovery Response the row in Table 1 with ID 5, the corresponding row in Ta-

ENDIF ble 2 is the first row. This row states that if the current

ENDIF mode isBlind and themBlind_Timeout expires when the

conditionTorque_Motor_On is true and the inhibit condition

LA variant of these semantics applies to the pairs of rows (ID 1a and ID A . . .
1b) and (ID 7 and ID 8). See the Appendix for details. mInhibit Blind is false, then the system makes a transi-



[1 ] 2 3 [ 4 [ 5 6 7 [ 8
Failure

Failure Detection Persistence Failure

ID | Condition Phase Failure Criteria Time Notifications | Recovery Response| Inhibit

la | Failureto Autotrack PositionErr PersAutotrack | Autotrack Transition to Inhibit_
Autotrack: Mode > _Failure Failure, Switchover Mode String
response not Autotrack Error Joint.
inhibited Failure

1b | Fallure to Autotrack PositionErr PersAutotrack | Autotrack Device. Inhibit_
Autotrack: Mode > _Failure Failure, Power Off, String
response Autotrack Error Joint Transition to
inhibited Failure Checkout Mode

5 Blind Ops Blind Mode | Blind duration None Time_Limit _ Transition to Inhibit_
timeout and Torque | > Limit+1 Blind Shutdown Mode Blind
exceeded Motor On

7 String failure: | Autotrack Receive CWAStr | PersString Joint. Transition to Inhibit_
response Mode ing_Failure _Failure Failure Switchover Mode String
inhibited not

8 String failure: | Autotrack Receive CWAStr | PersString Joint Device Inhibit_
response Mode ing-Failure _Failure _Failure PowerOff, String
inhibited Transition to

Checkout Mode

Table 1. Excerpts from NASA's original requirements document for FDIR

gl“”i”t Mode (E@"Te(n; — e ’S\II?WdMOde tence the time that the condition defined in columns 3 and 4
in mBlind_Timeout utdown . . . .
(nTorque Motor.On AND must persist. In computing the recovery aqtlon, any _ent_ry in
NOT mInhibit_Blind) the seventh column other than the destination mode is signif-
Autotrack QT(tPers_Autotrack Fail) Switchover icant. For failure condition with ID 1b in Table 1, the sig-
WHEN (NOT Inhibit String) nificant entry in the seventh columnevice Power Off,
Autotrack @T(tPers_Autotrack Fail) Checkout hile for ID 1a th . iqnifi besid h d
WHEN Inhibit String while for at ere is no signi |ca.nt entry esi es the mode
transition. For failure condition with ID 1b in Table 1, the

value of the recovery actiotRecovery is defined in the first
row and the last row of Table 4. These rows state that, if the

system is imutotrack mode and the failure to autotrack has

tion to modeShutdown. Note thamBlind Timeout iS an  persisted for some specified tifnghenInhibit_String is
abstract monitored variable that becomes true when the timgse then the value afRecovery is None: if the system is

that the system has been in maieind exceeds.imit + 1.2

Table 2. Excerpt from the mode transition table for FDIR

in Autotrack mode and the failure to autotrack has persisted

] o ) ] ] for some specified time whelmhibit_String is true, then
The information in the third, fourth, fifth, and sixth columns {6 value ofcRecovery is Device_Power Off.

of Table 1 is also used to compute the value of the Caution

Warning Alarm, which we model asAlarml. The third 10 problems in the Original FDIR Requirements Document

cp!umn indicates the current _rr_lode and ppssmly SOME CONgy, o objective of a requirements document is to specify the set
d.|t|on, the fourth column speqﬂes a condition (poss!bly PEr Gt all acceptable system implementations. Hence, the docu-
5|ster_1t as indicated by the fifth column), and the sixth Co.l'ment should be free of implementation bias since any design
umn '”d"?"?‘tes the vaIue.of the alarm. For example,. for fall'or implementation decision in a requirements document ex-
ure condition with ID 5 in Tabl_e .1’ the corresponding row cludes some acceptable implementations. One serious exam-
in Table 3, the event table defining the valuecaflarni, le of implementation bias in the original FDIR requirements
IS th? second row. Th's rpw states that If the current m.od information was an internal continuation indicator for the fail-
IS Blind and thmBllnq’Tlmeom expires when the condi- ure condition ID 1. The function of this internal indicator
tion Torque Motor On is true, then the value ofAlarml . 40 “trigger” two alternative failure conditions to obtain
IS Time Limit Blind. The entt:yl\.lever n the second row an additional response indirectly. We eliminated this imple-
means that if the current modedisind, there is no event that mentation bias by splitting the failure condition with ID 1

can changeAlarn1 to have the valugutotrack Failure. .. yne original FDIR requirements document from which Ta-

In Table 1, the third, fourth, fifth, seventh, and eighth columnsPle 1 was extracted) into two failure conditions and including

contain the information that defines the value of the recoveryn€ additional responses directly. The resulting failure con-

2This operation could have been expressed more concretely using SCR’s3The details of persistence are expressed in the table defining
duration operator. tPers_Autotrack Fail, which has been omitted from this paper.



[ Mode ] Events
Autotrack | QT(tPers_Autotrack Fail) | Never
Blind Never @QT(mBlind_Timeout)
WHEN mTorque_Motor_On
[ cAlarm1l” = | Autotrack.Failure | Time Limit_Blind |

Table 3. Excerpt from event table defining Caution Warning Alatflarmi

[ Mode [ Events |
Autotrack QT(tPers_Autotrack Fail) @QT(tPers_Autotrack Fail)
WHEN NOT mInhibit_String WHEN mInhibit_String
Blind QT(mBlind-Timeout) Never
WHEN mTorque_Motor_On
cRecovery” = | None | Device Power Off ]

Table 4. Excerpt from event table defininRecovery

Appendix for the full details). This elimination took place in sitions, and the input events that could trigger mode transi-

the original FDIR requirements documegforetranslating  tions.

these requirements into SCR. Thus elimination of implemen-

tation bias from the original semi-formal tabular requirementsGiven the ambiguity, imprecision, and incompleteness of the

was independent of the formal method chosen to represent thequirements documents of the three components, we relied

requirements. on application experts to clarify the required software behav-
ior and to provide the details of missing requirements infor-

Another error was detected when we used the information imation. Access to these application experts was critical to

Table 1 to specify Table 4, the event table defining the valugreparing a precise, unambiguous SCR requirements specifi-

of the recovery actionRecovery. In examining Table 4, one cation. Such a requirements specification makes instances of

notes that a responsedvice Power _0ff is required when incompleteness obvious. Application experts can often pro-

mInhibit_String is true, while the response i®ne when  vide the missing requirements information.

mInhibit_String is false. This seemed non-intuitive to us

since the objective of an Inhibitor is to inhibit a response, yility of the SCR ToolsAs mentioned in Section 1, the SCR
while this does the reverse. In fact, this was a problem withgo|s include various tools for validating and verifying the
the stated requirements that was later fixed. However, thigocumented requirements. Those SCR tools with the most
case is not reflected in the nominal semantics (*) but ratheyjjity in formulating the requirements of the three NASA
requires a detailed explanation from the domain experts. systems were the SCR consistency checker and the SCR sim-
ulator. The consistency checker was valuable in detecting
instances of incompleteness and inconsistency in the tabu-
lar representation of the SCR-style requirements. It also ex-
posed less serious problems, such as syntax and type errors,
Quality of the Requirements Documefihe original require-  yndefined and unused variables, and other errors and warn-
ments documentation of each of the three components Wafgs analogous to those a compiler detects in a program. The
in varying degrees, ambiguous and imprecise. In the case @fimylator was useful in validation of the SCR specification
the FPE, the required software behavior was described in boql5\), application experts. Running the simulator, for example,
natural language and in a Statecharts-like graphical notatiome|ped expose a serious error in the SCR specification of the
Although the FPE requirements document provided us WittepE requirements (in this case, the error was in the transla-
some intuition about the required software behavior, manyign to SCR). The simulator was also valuable for exposing
details of the behavior were difficult to understand, and som@spects of the requirements that needed further clarification,
of the documented requirements were ambiguous or inCons g, the assumptions on which the requirements are based,

sistent. In addition, t_he FPE re_quirements d_ocument OoMitthe required response of a given system to a sequence of in-
ted some of the required behavior. The requirements docyst events, etc.

ment for the Incubator Display was written solely in natural

language, and, as a result, this document also suffered frofe more advanced verification tools made available by the
imprecision and some incompleteness. The highest qualitCR toolset, e.g., the SPIN model checker [16], the theorem
requirements documentation was the tabular requirements i'"pTovers (the TAME interface [1] to PVS [19] and SALSA [2],
format'ion and the finite state diagram describing the requi.regmd the invariant generator [17]) were not used in analyzing
behavior of the FDIR component. The tabular format distin-the three SCR specifications since the scope of each of the
guished important aspects of the required software behaviofhree efforts did not include advanced verification. The goal
such as the details of the component's inputs and outputs, anf the FPE effort was to demonstrate the feasibility of test
the finite state diagram identified other significant require¢gse generation, while the goal in FDIR was to evaluate the
ments information, such as the system modes, the mode tragsility of the SCR method and tools for detecting specifica-

5. LESSONSL EARNED

General Lessons Learned



tion errors. A major goal for the Incubator Display effort This made the FPE specification harder to understand and the
was to demonstrate the utility of SCR’s Graphical User Inter-generation of test cases more complex than necessary. A new
face builder. The utility of SCR’s advanced verification tech- prototype version of the SCR toolset supports both arrays and

niques have already been demonstrated in other efforts (segleues and hence this shortcoming of the toolset has been re-
e.g., [13], [18], and [11]). duced.

Utility of the SCR-Style Requirements Methiideach of the ~ FDIR: Lessons Learned

three cases, the NASA personnel and contractors with whorgyposing Implementation BiasAs described in Section 4,

we interacted were able to understand and evaluate the tabye SCR method was useful in exposing and removing im-
lar and graphical notation that encode the SCR representatigflementation bias from the documented FDIR requirements.
of the required software behavior. They were also able to apmterestingly, this problem was exposed, not by executing the
ply the SCR consistency checker and simulator. In each casgcR tools, but by organizing the FDIR requirements infor-
these tools helped to detect various problems with the SCR repation in a different manner (see Table 1). The process of
quirements specification. However, in none of the three casegefining the SCR variables led us to discover the problem of
were the NASA personnel able to construct the initial SCRimplementation bias. The original requirement expressed the
representation of the required component behavior. How t@eeq to “Trigger String Failure,” which was identified as an
represent the required externally visible behavior of & COMpOmternal event, not an external input. The lesson here is that
nentin the SCR notation can be challenging for practitionersgrganizing the requirements with the SCR method can expose
especially at the beginning. In each case, we generated thdesirable aspects of the requirements document that other
initial SCR specification of the some significant aspect of thegrganizations may not expose. Unlike many alternative speci-
required component behavior and presented it to the NASAjcation languages, such as Statecharts [8] and Stateflow, SCR
personnel, who were able to provide feedback on behavigfequires a black-box representation of the requirements that
that we had captured incorrectly. Clearly, more guidance iocuses on the externally visible behavior of the software—

needed to help software developers construct a state machipg  The system inputs and outputs and the required relation
model of the required component behavior and to represempetween them.

that behavior in the form of tables.

) . Importance of Explicit SemanticsWhen we first received
Fault Protection Engine: Lessons Learned NASAs tabular representation of the FDIR requirements, we

Utility of Automatic Test Case Generatioklost of the time ~ Were not sure how to interpret the information in the table.
and effort expended in the FPE effort was spent in constructoW to connect this information to the entities in an SCR-
ing the SCR specification of the FPE requirements. Oncélle requirements document—e.g., to monitored and con-
the SCR specification was complete, applying the SCR tegfo_lled vana_bles—qu unclear. Translat|ng the original re-
case generator [7] was relatively straightforward. Applyingduirements information from the original NASA table to the
the test case generator to the SCR specification of the FPECR representation removed this ambiguity. We were fortu-
requirements produced a small set of test cases for evaluatiftite to have an application expert available who could explain
an FPE software implementation. These test cases were dEle seémantics of the NASA table. Without his expertise, the
Signed to Satisfy the Branch Coverage Criterion’ which guarlran3|at|0n to SCR would no doubt have been incorrect.
antees that software corresponding to every statement in the .

SCR specification is tested at least once. Unfortunately, dubicubator Display: Lessons Learned

to limited funding, the set of Fest cases were never used Qtility of a Graphical User InterfaceOnce an SCR require-
evaluate an FPE implementation. ments specification has been constructed, the SCR toolset al-
) lows a user to design a graphical user interface to the SCR
Lack of Data Structures in the SCR Languagée lack of  simylator. Such an interface is extremely valuable because it
support in the SCR language for data structures, such as &fiows users to use the simulator to evaluate the correctness of
rays and queues, made it difficult to specify some importantne underlying SCR requirements specification. By running
aspects of the required behavior of the FPE requirements. FQgenarios (i.e., sequences of monitored variable changes)
example, one major input to the FPE was a three-elemenhrough the simulator, an application expert can check that
vector containing the IDs of three different priority requestsine specified behavior captures the intended behavior. The
for responses to detected faults. The highest priority requesisiistence of the graphical interface means that the applica-
were ground requests for responses, the next highest prioriyon expert can evaluate the specified requirements without
requests were for interrupting responses, and the lowest priofmgerstanding the SCR tables or the underlying state machine
ity requests were for non-interrupting responses. In additionspecification of the required behavior. The graphical front-
if it is already processing a request, the FPE is required tQnq that we built for the Incubator Display with a small effort
queue any new requests. Because the implementation of t'(ﬁpproximately two days) was especially valuable.
SCR toolset available at the time did not support either arrays

represented these data structures using integers and booleans.



customized for specifyingeactive systemsystems required SCR consistency checker can be used to check the tables in
to produce certain outputs in response to certain inputs. lthe document for consistency and completeness. In addition,
reactive systems, there is a complex interaction between irthe more advanced tools in the SCR toolset, e.g., SPIN and
puts, outputs, and system states (relevant parts of which alAME, could be used to check that the SCR specification sat-
often modeled by modes) that may be conveniently captureisfies the set of abstract properties included in the document.
in a state machine model. Although it was required to re-
spond to inputs, the Incubator Display was not the ideal sysNeed to Involve Requirements ExperBased on our expe-
tem to model in SCR since the nature of its responses mostlgence in applying the SCR method to many practical sys-
followed the same straightforward (and rather uninterestingjems, including mission-critical Navy systems and the three
pattern of “In response to a user command to change som¥ASA components described above, our conclusion is that,
incubator parameter (such as the temperature, lighting, or fafor the foreseeable future, software developers will need re-
speed), display the desired new value of the parameter.” Fuguirements experts to help in formulating requirements docu-
ther, the required response to each user command was iments in formal languages such as SCR. We believe it should
dependent of the Incubator Display’s response to each pridse sufficient for requirements experts to construct an initial
command, so there was no concern about complex interasersion of the requirements specification for some important
tions. This lack of complexity meant that the underlying SCRaspect of the required component behavior. Once practition-
state machine model was of limited value in representing thers have a good example of how to specify and organize re-
requirements of the Incubator Display. guirements documents in the SCR style, they should be able

to extend and modify the requirements document.

6. RECOMMENDATIONS

Need to Develop and Apply More Advanced Technoldgy.
Based on our experience in specifying the requirements oliciting and documenting requirements, applying some of
the three NASA components and, in particular, the lessonghe more advanced technology, such as advanced verifica-
learned in doing so, we make three recommendations for imtjon techniques, should help improve the quality of software
proving the quality of requirements documents for safetyrequirements specification. In addition, once a software re-
critical aerospace systems. quirements specification has been validated (e.g., by appli-

cation experts using a simulator) and verified (e.g., using a
Need for an Updated SCR-Style Requirements Docurtrent. model checker or a theorem prover), it can be used as the ba-
1978, the SCR requirements method was introduced with thgjs for automatically generating test cases or for automatically
publication of the requirements document for the Operationagenerating efficient source code in a high level language such
Flight Program for the A-7 aircraft [14]. In 1980, a journal as C or Java (see, e.g., [20]). The use of this advanced tech-
paper was published describing the principles used in desigiology should lead to significant improvements in the quality
ing the requirements document and providing numerous exof both requirements specifications and software; it should

amples [15]. The A-7 requirements document was carefullyy|so decrease the cost of producing reliable software.
organized as a reference document: The goal of the document

was to make requirements information easy to find, to remove

redundancy, and to make the requirements information as pre- 7. CONCLUSIONS

cise, unambiguous, and complete as possible. Since 1980,

some new information could be added to the individual chapAlthough this paper has focused on the SCR method for re-
ters of an SCR requirement document; for example, achapt@(uirements specification, other rigorous requirements meth-
listing a set of abstract properties, e.g., the high level “shall’ods, such as RSML and its variants SpecTRM [21] and

statements in many NASA requirements documents, could bBSML™“ [9], should also be considered for formally spec-
added. ifying and formally analyzing software requirements. By

weeding out errors early in the development process when
There is an urgent need to revise and extend the organizatidR€y are cheap to correct, using more rigorous requirements
of an SCR-style requirements document, such as the doctPethods and tools designed to improve the quality of require-
ment published in 1978. A fully worked out version of such ments specifications (e.g., consistency checkers, simulators,
a document for an existing System’ such as one of the Con'a.nd advanced verification tOO|S) should produce both h|gher
ponents described in this paper, would be valuable as an eguality requirements specifications and higher quality, more
ample of how a rigorous requirements document should béeliable software. Moreover, the existence of high quality
organized. It would also provide examples of how tables caiequirements specifications can help lower the cost of both
be used to specify the values of the system’s outputs, i.e., ilgroducing test cases for evaluating hand-coded software and
controlled variables, and other components of the softwargonstructing efficient code by constructing the code automat-
requirements. Such an example requirements document wially from the specifications.
serve two functions. First, it will provide an example of how
software practitioners can specify and organize requirements
information. Second, it will provide a repository for specifi-
cations that have been checked using tools. For example, the



7 and ID 8 given immediately above, the semantics for these

8. ACKNOWLEDGMENTS
. three cases may be expressed as shown below (“DO x,y,..."
The authors thank Allen Nikora of JPL, Randy Copeland Ofabbreviates “DO x AND DO y AND ...")

Titan, Tom Presburger of NASA Ames, and Susanne Moran
of Intrinsix for answering our questions and providing doc-

umentation of the three NASA systems. This research wa¥> 1: IF AAND D DO X, i:=true
supported by NASA and the U.S. Office of Naval Research. ID 7: IF A AND (B ORi) AND NOT C DOY, Q

9. APPENDIX

ID8: IFAAND (BORi{)AND CDOY, R

This appendix presents the details of the implementation bia‘ghe.i_nternal continuation indicataris treated in a special
detected in the FDIR requirements document and how th¥ay: if bothA andD hold, the system should perforfand
bias was eliminated. To simplify the explanation, we define &5t? t0 true. Settingi in turn triggers processing via either

number of abbreviations, each of which (exc&pdescribes
externally visible behaviorA4, B, C, and D represent FDIR
inputs treated essentially as boolean expressions, ihilé,
@, andR represent FDIR responses.

A “In Autotrack Mode”

D “PositionErr > Autotrack Error holds for
PersAutotrack Failure”

i “String_Failure”

X “Autotrack Failure”

B “CWA _String Failure holds for Per$tring”

C “Inhibit_String”

Y “Joint_Failure”

Q “Transition to Switchover Mode”

R “Device_PowerOff, Transition to Checkout Mode”

There are two exceptions to the nominal semantics

not inhibited” in Failure Condition is defined by:

IF Failure Detection Phase
AND Failure Criteria holds for
Persistence Time
AND NOT Inhibit
THEN
DO Failure Notifications AND
DO Recovery Response
ENDIF

The semantics of ID 8, which indicates “response inhibited”

in Failure Condition, is defined by:

IF Failure Detection Phase
AND Failure Criteria holds for
Persistence Time
AND Inhibit
THEN
DO Failure Notifications AND
DO Recovery Response
ENDIF

Using (1) the original table expressing the semantics of FDIR

ID 7 or ID 8 (depending upon whethér is falseor true) to
provide additional responsé$ and@ or Y and R, respec-
tively. Not only is the indicatoi an artifact of “reusing” the
requirements, but the sequencing of responsesd(@ or Y
and R after responsg is also artificial.

To remove the implementation bias, we eliminated the inter-
nal trigger; and sequencing of responses by splitting ID 1 into
two cases ID 1a and ID 1b that now directly incorporate the
respective additional responsgs or Y, R as shown below:

ID1la: IFAAND DANDNOTCDOX,Y, Q@
ID1b: IFAAND DANDCDOX,Y,R
ID7: IFAAND BANDNOT CDOY, Q@
ID8: IFAAND BAND CDOY, R

) - . (*) for in‘I’ranslating back to the tabular form Table 1 shows the com-
terpreting the rows of the original FDIR requirements shown

in Table 1. The semantics of ID 7, which indicates “respons

lete version of rows ID 1la and ID 1b corresponding to the
bbreviated forms above. Note that ID 1a and ID 1b now have
the same special case semantics as the respective ID 7 and ID
8.
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